TA: LEE, Yat Long Luca

Email: yllee@math.cuhk.edu.hk

Office: Room 711 AB1 (Temporary), Room 505 AB1 (Until further notice) Office Hour: Send me an email first, then we will arrange a meeting (if you need it). Remark: Please let me know if there are typos or mistakes.

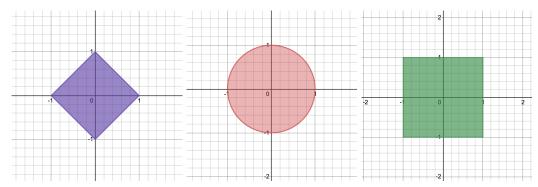
## Q1

Sketch the metric ball of radius 1 centered at 0 in  $\mathbb{R}^2$  for the metric  $d_1, d_2$  and  $d_{\infty}$  on  $\mathbb{R}^2$ .

## Solution:

Denote  $B^p(x,r)$  be the  $d_p$  metric ball centered at x with radius r. Denote  $x = (x_1, x_2) \in \mathbb{R}^2$ .

- For  $B^1(0,1) := \{x : d_1(x,0) \le 1\} = \{x : |x_1| + |x_2| \le 1\}$
- For  $B^{\infty}(0,1) := \{x : d_{\infty}(x,0) \le 1\} = \{x : \max\{|x_1|, |x_2|\} \le 1\}$
- For  $B^2(0,1) := \{x : d_2(x,0) \le 1\} = \{x : \sqrt{x_1^2 + x_2^2} \le 1\}$



From left to right:  $B^1(0, 1)$ ,  $B^2(0, 1)$ , and  $B^{\infty}(0, 1)$ 



# When you use the supremum norm

Source: Mathematical Mathematics Memes on Facebook by Markus Klyver.

## $\mathbf{Q2}$

Show that for any  $\alpha \in \mathbb{R}$ , the set

$$\{f \in C[a,b] : f(x) \ge \alpha, \forall x \in [a,b]\}$$

is closed in  $(C[a, b], d_{\infty})$ .

#### Solution:

Denote  $A := \{f \in C[a, b] : f(x) \ge \alpha, \forall x \in [a, b]\}$ . To show that A is closed, we show that its complement  $B := C[a, b] \setminus A$  is open. Explicitly,  $B = \{f \in C[a, b] : f(x) < \alpha$ , for some  $x \in [a, b]\}$ . For any  $f \in B$ , we want to show that there exists a ball around f such that the ball is contained inside B.

Take any  $f \in B$ , there exists  $x_0 \in [a, b]$  such that  $f(x_0) < \alpha$ . By continuity of f, there exists a point  $y \in [a, b]$  such that  $f(y) \leq f(x)$  for all  $x \in [a, b]$ . Then, we have the relation

$$f(y) \le f(x_0) < \alpha$$

Let  $\varepsilon = \alpha - f(x_0) > 0$ . Consider  $B^{\infty}(f, \varepsilon) := \{g \in C[a, b] : d_{\infty}(g, f) < \varepsilon\}$ . We want to show that for all  $g \in B^{\infty}(f, \varepsilon)$ , we have  $g \in B$ . Now, take any  $g \in B^{\infty}(f, \varepsilon)$ , we have

$$|g(x_0) - f(x_0)| \le \max_{x \in [a,b]} |g(x) - f(x)| < \varepsilon = \alpha - f(x_0)$$

• If 
$$g(x_0) - f(x_0) \ge 0$$
, then  $g(x_0) - f(x_0) < \alpha - f(x_0) \implies g(x_0) < \alpha$ .

• If 
$$g(x_0) - f(x_0) \le 0$$
, then  $g(x_0) \le f(x_0) < \alpha \implies g(x_0) < \alpha$ .

This shows  $g \in B$ . Thus B is open, equivalently,  $C[a, b] \setminus B = A$  is closed.

**Remark:** A set that is not closed does NOT mean it is open. Some of you wanted to show Q2 by assuming A is open to get a contradiction. This is not true in a general topological space<sup>1</sup>. One example is the *discrete metric space*, in which all sets are both open and closed. Moreover, sets like [a, b) in  $\mathbb{R}$  are not open and not closed. Do not confuse with the useful fact that complement of open sets are closed, this does not imply not closed = open. You will definitely see more strange topological spaces when you take MATH3070.

<sup>&</sup>lt;sup>1</sup>metric spaces are topological spaces

## $\mathbf{Q3}$

- (a) Let  $l_1 = \{x = (x_1, x_2, ...) : \sum_{i=1}^{\infty} |x_i| < \infty, x_i \in \mathbb{R}\}$ . Show that  $d_1(x, y) := \sum_{i=1}^{\infty} |x_i y_i|$  is a metric on  $l_1$ .
- (b) Let  $l_2 = \{x = (x_1, x_2, ...) : \sum_{i=1}^{\infty} |x_i|^2 < \infty, x_i \in \mathbb{R}\}$ . Show that  $d_2(x, y) = \left(\sum_{i=1}^{\infty} |x_i y_i|^2\right)^{\frac{1}{2}}$  is a metric on  $l_2$ .
- (c) Let  $l_{\infty} = \{x = (x_1, x_2, ...) : \sup_i |x_i| < \infty, x_i \in \mathbb{R}\}$ . Show that  $d_{\infty}(x, y) = \sup_i |x_i y_i|$  is a metric on  $l_{\infty}$ .
- (d) Show that the sets  $l_1 \subset l_2 \subset l_{\infty}$ .

#### Solution:

Recall the three axioms of metric:

- (i)  $d(x,y) \ge 0$  for all  $x, y \in X$ . Moreover,  $d(x,y) = 0 \iff x = y$ ;
- (ii) d(x,y) = d(y,x) for all  $x, y \in X$ ;
- (iii)  $d(x,y) \leq d(x,z) + d(z,y)$  for all  $x, y, z \in X$

We will first check that the metric is well-defined, then check the three axioms.

(a) Since  $x, y \in l_1$ , we have  $\sum_{i=1}^{\infty} |x_i| < \infty$  and  $\sum_{i=1}^{\infty} |y_i| < \infty$ . Then  $d_1(x, y) = \sum_{i=1}^{\infty} |x_i - y_i| \le \sum_{i=1}^{\infty} (|x_i| + |y_i|) < \infty$ 

thus it is well-defined. Then we check the three axioms.

- (i) Since  $|x_i y_i| \ge 0$  for all *i*, then  $d_1(x, y) \ge 0$ . Moreover, if  $x_i = y_i$  for all *i*, we must have  $d_1(x, y) = 0$ .
- (ii) Since  $|x_i y_i| = |y_i x_i|$ , then  $d_1(x, y) = d_1(y, x)$ .
- (iii) For all  $x, y, z \in l_1$ , we have  $|x_i y_i| = |x_i z_i + z_i y_i| \le |x_i z_i| + |z_i y_i|$  since the series converges, we have  $d_1(x, y) \le d_1(x, z) + d_1(z, y)$ .

Thus it is  $d_1$  is a metric on  $l_1$ ,

(b) Since  $x, y \in l_2$ , we have  $\sum_{i=1}^{\infty} |x_i|^2 < \infty$  and  $\sum_{i=1}^{\infty} |y_i|^2 < \infty$ . Then consider

$$\sum_{i=1}^{\infty} |x_i - y_i|^2 = \sum_{i=1}^{\infty} |x_i^2 - 2x_i y_i + y_i^2| \le \sum_{i=1}^{\infty} \left( |x_i|^2 + 2|x_i y_i| + |y_i|^2 \right)$$

by Cauchy-Schwarz's inequality, we have

$$\sum_{i=1}^{\infty} |x_i y_i| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2} \sqrt{\sum_{i=1}^{\infty} |y_i|^2}$$

then

$$\sum_{i=1}^{\infty} \left( |x_i|^2 + 2|x_i y_i| + |y_i|^2 \right) \le \sum_{i=1}^{\infty} |x_i|^2 + 2\sqrt{\sum_{i=1}^{\infty} |x_i|^2} \sqrt{\sum_{i=1}^{\infty} |y_i|^2} + \sum_{i=1}^{\infty} |y_i|^2$$

and thus

thus

$$\sum_{i=1}^{\infty} |x_i - y_i|^2 = \left( \sqrt{\sum_{i=1}^{\infty} |x_i|^2} + \sqrt{\sum_{i=1}^{\infty} |y_i|^2} \right)^2$$
$$d_2(x, y) = \sqrt{\sum_{i=1}^{\infty} |x_i|^2} + \sqrt{\sum_{i=1}^{\infty} |y_i|^2} < \infty$$

i.e., it is well-defined. Then we check

(i) Since  $|x_i - y_i| \ge 0$  for all *i*, then  $d_2(x, y) \ge 0$ . Moreover,  $d_2(x, y) = 0$  if and only if  $x_i = y_i$  for all *i*.

(ii) Similarly,  $|x_i - y_i| = |y_i - x_i|$  for all *i*, therefore  $d_2(x, y) = d_2(x, y)$ .

(iii) In the above proof of well-definedness, we know, by similarity, that

$$\sqrt{\sum_{i=1}^{\infty} |x_i + y_i|^2} \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2} + \sqrt{\sum_{i=1}^{\infty} |y_i|^2}$$

then

$$d_2(x,y) = \sqrt{\sum_{i=1}^{\infty} |x_i - y_i|^2}$$
  
=  $\sqrt{\sum_{i=1}^{\infty} |x_i - z_i + z_i - y_i|^2}$   
 $\leq \sqrt{\sum_{i=1}^{\infty} |x_i - z_i|^2} + \sqrt{\sum_{i=1}^{\infty} |z_i - y_i|^2}$   
=  $d_2(x,z) + d_2(z,y)$ 

thus  $d_2$  is a metric on  $l_2$ .

(c) Since  $x, y \in l_{\infty}$ , we know that  $\sup_{i} |x_{i}| < \infty$  and  $\sup_{i} |y_{i}| < \infty$ . Then

$$d_{\infty}(x,y) = \sup_{i} |x_i - y_i| \le \sup_{i} (|x_i| + |y_i|) < \infty$$

hence it is well-defined.

- (i) Since  $|x_i y_i| \ge 0$  for all i,  $\sup_i |x_i y_i| \ge 0$ . Moreover,  $x_i = y_i$  for all i if and only if  $d_{\infty}(x, y) = 0$ .
- (ii)  $|x_i y_i| = |y_i x_i|$  for all *i*, then  $d_{\infty}(x, y) = d_{\infty}(y, x)$ .
- (iii)  $|x_i y_i| \le |x_i z_i| + |z_i y_i|$  for all *i*, then taking the supremum yields  $d_{\infty}(x, y) \le d_{\infty}(x, z) + d_{\infty}(z, y)$ .
- (d) for all  $x \in l_1$ , we have  $\sum_{i=1}^{\infty} |x_i| < \infty$ , then this means  $\left(\sum_{i=1}^{\infty} |x_i|\right)^2 < \infty$ . Moreover,  $\sum_{i=1}^{\infty} |x_i|^2 \le \left(\sum_{i=1}^{\infty} |x_i|\right)^2 < \infty$ . Thus  $x \in l_2$ . Now that  $x_2 \in l_2$ , we must have  $|x_i|^2 < \infty$  for all *i*, that is  $|x_i| < \infty$  for all *i*. Thus,  $\sup_i |x_i| < \infty$ , implies  $x \in l_\infty$ .

## $\mathbf{Q4}$

Let  $C^1[a,b] = \{f \in C[a,b] : f \text{ is continuously differentiable on } [a,b]\}.$ Define, for all  $f,g \in C^1[a,b]$ 

$$d(f,g) := \|f - g\|_{\infty} + \|f' - g'\|_{\infty}$$

Show that d is a metric on  $C^1[a, b]$ . Furthermore, is  $f_k(x) := \frac{\sin kx}{k}$ , k = 1, 2, ... a convergent sequence in  $(C^1[0, 1], d)$ ?

#### Solution:

Explicitly,

$$d(f,g) := \|f - g\|_{\infty} + \|f' - g'\|_{\infty} = \max_{x \in [a,b]} |f(x) - g(x)| - \max_{x \in [a,b]} |f'(x) - g'(x)|$$

- (i) Since  $|f(x) g(x)| \ge 0$  and  $|f'(x) g'(x)| \ge 0$  for all  $x \in [a, b]$  we have  $d(f, g) \ge 0$ . Moreover, |f(x) - g(x)| = 0 and |f'(x) - g'(x)| = 0 for all  $x \in [a, b]$
- (ii) Since |f(x) g(x)| = |g(x) f(x)| and |f'(x) g'(x)| = |g'(x) f'(x)| for all  $x \in [a, b]$ , then d(f, g) = d(g, f).
- (iii)  $d(f,g) \le d(f,h) + d(h,g)$  follows from  $|f(x) g(x)| \le |f(x) h(x)| + |h(x) g(x)|$  and  $|f'(x) g'(x)| \le |f'(x) h'(x)| + |h'(x) g'(x)|$  for all  $x \in [a, b]$  as usual.

Since the above holds for all  $x \in [a, b]$ , it holds for  $\max_{x \in [x, b]} |f(x) - g(x)|$  and  $\max_{x \in [a, b]} |f'(x) - g'(x)|$  as well.

Now, we want to show whether  $f_k$  converges in  $(C^1[0, 1], d)$ . We first observe that  $f_k \to 0$  as  $k \to \infty$ . Then suppose  $f_k$  converges to 0 in  $(C^1[0, 1], d)$ , then for all  $\varepsilon > 0$ , there exists a  $N \in \mathbb{N}$  such that when  $k \ge N$ , we have  $d(f_k, 0) < \varepsilon$ , that is,

$$\max_{x \in [0,1]} \left| \frac{\sin kx}{k} \right| + \max_{x \in [0,1]} \left| \cos kx \right| < \varepsilon$$

but  $\max_{x \in [0,1]} |\cos kx| = 1$ . If we take  $\varepsilon = \frac{1}{2}$ , then we get a contradiction. Thus  $f_k$  does not converges in  $(C^1[0,1], d)$ .

## Q5

Let  $(X_1, d_1)$  and  $(X_2, d_2)$  be two metric spaces. Define  $d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$  by

$$d(u, v) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

for all  $u = (x_1, x_2)$  and  $v = (y_1, y_2)$  in  $X_1 \times X_2$ .

- (a) Show that d is a metric on  $X_1 \times X_2$ .
- (b) Show that if  $G_1$  is an open set of  $(X_1, d_1)$  and  $G_2$  is an open set of  $(X_2, d_2)$ , then  $G_1 \times G_2$  is an open set of  $(X_1 \times X_2, d)$ .

#### Solution:

d is well-defined since it is defined as the sum of two metric.

- (a) Check the axioms:
  - (i) Since  $d_1(x_1, y_1) \ge 0$  and  $d_2(x_2, y_2) \ge 0$  for all  $x_1, y_1 \in X_1$  and  $x_2, y_2 \in X_2$ , then we have  $d(u, v) \ge 0$  for all  $u, v \in X_1 \times X_2$ . For u = v, we have  $x_1 = y_1$  and  $x_2 = y_2$ , then d(u, v) = 0 follows from  $d_i(x_i, y_i) = 0$  for i = 1, 2.
  - (ii) Symmetry follows from  $d_i(x_i, y_i) = d_i(y_i, x_i)$  for i = 1, 2.
  - (iii) Consider  $u, v, w \in X_1 \times X_2$ , where  $u = (x_1, x_2), v = (y_1, y_2), w = (z_1, z_2)$ . We know that  $d_i(x_i, y_i) \le d_i(x_i, z_i) + d(z_i, y_i)$ . Thus,

$$\begin{aligned} d(u,v) &= d_1(x_1,y_1) + d_2(x_2,y_2) \\ &\leq d_1(x_1,z_1) + d_1(z_1,y_1) + d_2(x_2,z_2) + d_2(z_2,y_2) \\ &= d_1(x_1,z_1) + d_2(x_2,z_2) + d_1(z_1,y_1) + d_2(z_2,y_2) \\ &= d(u,w) + d(w,v) \end{aligned}$$

Thus d is a metric on  $X_1 \times X_2$ .

(b) Our goal is to show for all  $x = (x_1, x_2) \in G_1 \times G_2$ , there exists a  $\varepsilon > 0$  such that  $B(x, \varepsilon) \subset G_1 \times G_2$ .

Since  $G_1$  and  $G_2$  are open subsets of  $X_1$  and  $X_2$  respectively, we have

 $\forall x_1 \in G_1, \exists \varepsilon_1 > 0 \text{ such that } B_1(x_1, \varepsilon_1) \subset G$  $\forall x_2 \in G_1, \exists \varepsilon_2 > 0 \text{ such that } B_2(x_2, \varepsilon_2) \subset G$ 

Let  $\varepsilon := \min{\{\varepsilon_1, \varepsilon_2\}}$ . We want to show that for any  $x = (x_1, x_2) \in G_1 \times G_2$ , the  $\varepsilon > 0$  chosen satisfies  $B(x, \varepsilon) \subset G_1 \times G_2$ .

Now pick any  $y \in B(x, \varepsilon)$ , we have  $d(y, x) < \varepsilon$ , that is

$$d_1(x_1, y_1) + d_2(x_2, y_2) < \varepsilon$$

but this implies  $d_1(x_i, y_i) < \varepsilon \leq \varepsilon_i$  for i = 1, 2. So,  $y_1 \in G_1$  and  $y_2 \in G_2$ , showing  $(y_1, y_2) \in G_1 \times G_2$ . Hence,  $G_1 \times G_2$  is open.